Statistical thermodynamic basis in drug-receptor interactions: double annihilation and double decoupling alchemical theories, revisited
نویسنده
چکیده
Alchemical theory is emerging as a promising tool in the context of molecular dynamics simulations for drug discovery projects. In this theoretical contribution, I revisit the statistical mechanics foundation of non covalent interactions in drug-receptor systems, providing a unifying treatment that encompasses the most important variants in the alchemical approaches, from the seminal Double Annihilation Method by Jorgensen and Ravimohan [W.L. Jorgensen and C. Ravimohan, J. Chem. Phys. 83,3050, 1985], to the Gilson’s Double Decoupling Method [M. K. Gilson and J. A. Given and B. L. Bush and J. A. McCammon, Biophys. J. 72, 1047 1997] and the Deng and Roux alchemical theory [Y. Deng and B. Roux, J. Chem. Theory Comput., 2, 1255 2006]. Connections and differences between the various alchemical approaches are highlighted and discussed, and finally placed into the broader context of nonequilibrium thermodynamics. 1 ar X iv :1 60 7. 03 78 3v 1 [ qbi o. B M ] 1 3 Ju l 2 01 6
منابع مشابه
I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework.
In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues ...
متن کاملNew Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.
The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodyn...
متن کاملAssessment of a Single Decoupling Alchemical Approach for the Calculation of the Absolute Binding Free Energies of Protein-Peptide Complexes
The computational modeling of peptide inhibitors to target protein-protein binding interfaces is growing in interest as these are often too large, too shallow, and too feature-less for conventional small molecule compounds. Here, we present a rare successful application of an alchemical binding free energy method for the calculation of converged absolute binding free energies of a series of pro...
متن کاملExploring the interaction of nanocomposite composed of Fe3O4, CaAl layered double hydroxide and lamivudine drug with Human serum albumin (HSA): Spectroscopic studies
In the present work, the interaction ofFe3O4@CaAl LDH@ Lamivudine with human serum albumin (HSA) was investigated by applying UV–vis and fluorescence spectra. The nanocomposite was quenching the natural fluorescence of HSA, which was indicated the static quenching mechanism. The consequences demonstrated that this nanocomposite can strongly bind to HSA molecules. According to fluorescence quenc...
متن کاملThermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin
In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016